On implicit Lagrangian twin support vector regression by Newton method
نویسندگان
چکیده
In this work, an implicit Lagrangian for the dual twin support vector regression is proposed. Our formulation leads to determining non-parallel ε –insensitive downand upbound functions for the unknown regressor by constructing two unconstrained quadratic programming problems of smaller size, instead of a single large one as in the standard support vector regression (SVR). The two related support vector machine type problems are solved using Newton method. Numerical experiments were performed on a number of interesting synthetic and real-world benchmark datasets and their results were compared with SVR and twin SVR. Similar or better generalization performance of the proposed method clearly illustrates its effectiveness and applicability.
منابع مشابه
Training Lagrangian twin support vector regression via unconstrained convex minimization
In this paper, a new unconstrained convex minimization problem formulation is proposed as the Lagrangian dual of the 2-norm twin support vector regression (TSVR). The proposed formulation leads to two smaller sized unconstrained minimization problems having their objective functions piece-wise quadratic and differentiable. It is further proposed to apply gradient based iterative method for solv...
متن کاملFinite Newton method for Lagrangian support vector machine classification
An implicit Lagrangian [18] formulation of a support vector machine classifier that led to a highly effective iterative scheme [17] is solved here by a finite Newton method. The proposed method, which is extremely fast and terminates in 6 or 7 iterations, can handle classification problems in very high dimensional spaces, e.g. over 28,000, in a few seconds on a 400 MHz Pentium II machine. The m...
متن کاملApplication of Smoothing Technique on Projective Tsvm
This paper is devoted to extend projective twin support vector machine (PTSVM) by smoothing technique and propose a navel classification method with linear and nonlinear versions, named as smoothed projective twin support vector machine (SPTSVM). The advantage of SPTSVM is to solve a pair of unconstraint differentiable optimization problems rather than a pair of dual QPPs. By means of Newton-Ar...
متن کاملPolynomial Smooth Twin Support Vector Machines Based on Invasive Weed Optimization Algorithm
Smoothing functions can transform the unsmooth twin support vector machines (TWSVM) into smooth ones, and thus better classification results can be obtained. It has been one of the key problems to seek a better smoothing function in this field for a long time. In this paper, a novel version for smooth TWSVM, termed polynomial smooth twin support vector machines (PSTWSVM), is proposed. In PSTWSV...
متن کاملTrust Region Newton Method for Large-Scale Logistic Regression
Large-scale logistic regression arises in many applications such as document classification and natural language processing. In this paper, we apply a trust region Newton method to maximize the log-likelihood of the logistic regression model. The proposed method uses only approximate Newton steps in the beginning, but achieves fast convergence in the end. Experiments show that it is faster than...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Computational Intelligence Systems
دوره 7 شماره
صفحات -
تاریخ انتشار 2014